VPIphotonics

Towards Electronic-Photonic Design Automation for Optical Interconnect Networks

Nikolay Karelin, Sergei Mingaleev, Andre Richter, Igor Koltchanov, Eugene Sokolov, and Stanislau Savitski

> OPTICS'2017 Workshop Lausanne, Mar-31 2017

Outline

- Motivation
 - Need of flexible electronic-photonics automation tools (EPDA)
 - Already existing electronic (EDA) and photonic (PDA) tools
 - Mature
 - Built upon established approaches & user expectations
- Layout-aware schematic-driven design
- Layout-aware macro scripting
- EDA-PDA integration
 - Mentor Graphics (Pyxis Schematic)

 → VPI Design Suite
 - Cross-platform cosimulation example
 - Workflow integration

Photonic Circuit Design & Analysis Automated Design Environment

MOW LED

Circuit or Layout first?

Schematic-driven Design Example: Integrated THz Transceiver

Automated export of intermediate or final circuit designs to PhoeniX' OptoDesigner for layout design and GDSII-file generation

- Export of final circuit design
- ✓ Adding packaging and GDSII mask generation

Based on idea from:

F.M. Soares et al., *Transmitter PIC for THz Applications Based on Generic Integration Technology*, IPRM2013, Kobe, Japan.

Schematic-driven design: why not sufficient?

Standard schematic-driven approach

- BB layout determined by its parameters (length, bend angle, etc.)
- ⇒ IC layout fully determined by connectivity between BBs
- ⇒ Allows immediate IC simulation as BB model is known at each design step

BB - Building Block IC - Integrated Circuit

Two roles of optical waveguides

- Could act as connecting device: routes optical signals between building blocks of the circuit
- Detailed properties (length, width, shape) are not critical, may be ignored

- Could act as functional device: determine interference between signals traveling in different paths
- Detailed properties are very important, already at the beginning of circuit design

Problem: Often, no clear separation possible!

Photonic IC design ≠ circuit design + layout design

⇒Tight interaction between layout and circuit design necessary

Plphotonics Interoperation of Circuit & Layout

Layout-aware schematic-driven design methodology enables transparent access to information and functions

Layout-aware Circuit Design

Circuit design of unbalanced Mach-Zehnder interferometer

- use elastic connectors (dimensions defined by layout)
- specify desired locations for some of the ports

Automated Export to Layout Design Tool

Simulation of Circuits with Elastic Connectors

Circuit simulations with elastic connectors (Run Resolving Elastic macro)

Values of elastic connectors calculated in *OptoDesigner* (available in message log after simulation)

Layout-aware schematic driven approach: further actions

- Layout optimization & sweep
 - Example: automatic optimization of FSR
- Yield analysis
- Interaction with layout tool
 - Automatic
 - Before every photonic simulation
 - Guarantee correctness

Outline

- Motivation
 - Need of flexible electronic-photonics automation tools (EPDA)
 - Already existing electronic (EDA) and photonic (PDA) tools
 - Mature
 - Built upon established approaches & user expectations
- Layout-aware schematic-driven design
- Layout-aware macro scripting
- EDA-PDA integration
 - Mentor Graphics (Pyxis Schematic) <-> VPI Design Suite
 - Cross-platform cosimulation example
 - Workflow integration

Large-scale integration: Layout-Aware Macro Scripting

Optical interconnect switching networks

Design of very large-scale photonic ICs becomes very inefficient by manually placing building blocks and interconnecting them.

Utilize macro scripting with set of "layout-aware" commands, which allow to determine physical locations and orientations of building block ports on layout, etc.

With this, circuit design is created automatically

Large-scale integration: Layout-Aware Macro Scripting

Optical interconnect switching networks

Design of very large-scale photonic ICs becomes very inefficient by manually placing building blocks and interconnecting them.

Utilize macro scripting with set of "layout-aware" commands, which allow to determine physical locations and orientations of building block ports on layout, etc.

With this, circuit design is created automatically

Outline

- Motivation
 - Need of flexible electronic-photonics automation tools (EPDA)
 - Already existing electronic (EDA) and photonic (PDA) tools
 - Mature
 - Built upon established approaches & user expectations
- Layout-aware schematic-driven design
- Layout-aware macro scripting
- EDA-PDA integration
 - Mentor Graphics (Pyxis Schematic) <-> VPI Design Suite
 - Cross-platform cosimulation example
 - Workflow integration

Integration Example

Schematic on Pyxis side:

Schematic on Pyxis side:

(Electrical) ground (set globally) Bidirectional ports Non-connected pins

Conversion result

Simulation duration specified separately

- External specification of simulation duration
 - TimeWindow parameter

- Exchange of files
 - E-O-E simulation
 - File transfer over network
 - Reading of the whole stimulus file

Conversion result

Simulation duration specified separately

OPTICS'2017 - Copyright VPIphotonics

Simulation result

Cross-team design automation

- Photonic vs. electronic design frequently requires
 - Different skills
 - Different PDKs
 - Specific analysis approaches
- Cross-team: design is used by another team for analysis

Integration Approach

Conversion result

Summary

- Progress in optical interconnection requires changes in design approach
 - EDA and PDA are already mature tools built upon different approaches
 - seamless integration requires clearly defined interfaces
 - support of cross-platform and cross-team work
- Layout-aware schematic-driven design methodology
 - seamless integration of circuit and layout design tools
 - flexible and adaptive definition of PDK libraries
- Next steps towards
 - full interoperation / integration of electronic, photonic and layout design tools

VPIphotonics.com

software & services for photonic design & analysis