

A Force-Directed Placement Algorithm for 3D Optical Networks-on-Chip

Anja von Beuningen, Ulf Schlichtmann

Institute for Electronic Design Automation
Technische Universität München

Outline

- Introduction
- Placement and Routing Tools for ONoCs
- Force-Directed Placement
 - Initial Placement
 - Global Placement
 - Legalization
- Experimental Results
- Conclusion

The Photonic Layer

 A path connects two Hubs or a Hub and a Memory Controller via passive Photonic Switching Elements (PSEs) and waveguides

Logic Scheme vs. Physical Design

Logic Scheme

Manually created layout [Ramini NOCS'12]

Creating layout manually is time consuming, error prone and suboptimal

⇒ Automatic place & route tool for optical NoCs are needed

Placement and Routing Problem

Netlist, chip area, positions & dimensions of hubs and memory controllers

- Minimize maximum insertion loss over all paths, e.g. minimize
 - Waveguide length
 - Number of crossings between waveguides
 - Number of bends
- Constraints:
 - Place all PSEs (and waveguides) inside chip area
 - No overlap

Valid and optimal layout

Placement and Routing Tools for ONoCs

	Place- ment	Routing	3D	Minimize Laser Power Consumption	Speed of Placement
Seo+ ISQED'05	√	✓	X	×	N/A
Minz+ TCPT'07	X	✓	1	×	X
Ding+ DAC'09	X	✓	1	1	X
Condrat+ TCAD'14	×	✓	✓	✓	X
Boos+ ICCAD'13	√	✓	√	✓	_
Our Approach	/	✓	√	/	+

Our Approach

Placement

Initial Placement (1)

- Minimize quadratic length of nets
- $\tilde{L}(\mathbf{x}, \mathbf{y})$ = approximated waveguide length
- P = set of all paths
- N_p = set of all nets in path p

$$\tilde{L}(\mathbf{x}, \mathbf{y}) = \sum_{p \in P} \sum_{(i,j) \in N_p} \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Initial Placement (2)

$$\tilde{L}(\mathbf{x}, \mathbf{y}) = \sum_{p \in P} \sum_{(i,j) \in N_p} \frac{\omega_{ij}}{2} (x_i - x_j)^2 + \frac{\omega_{ij}}{2} (y_i - y_j)^2$$
$$= \frac{1}{2} \mathbf{x}^T \mathbf{C}_{\mathbf{x}} \mathbf{x} + \mathbf{x}^T \mathbf{d}_{\mathbf{x}} + \frac{1}{2} \mathbf{y}^T \mathbf{C}_{\mathbf{y}} \mathbf{y} + \mathbf{y}^T \mathbf{d}_{\mathbf{y}}$$

Minimize waveguide length

$$\nabla_x \tilde{L}(\mathbf{x}, \mathbf{y}) = \mathbf{C}_{\mathbf{x}} \mathbf{x} + \mathbf{d}_{\mathbf{x}} = \mathbf{0} = F_x^{net}$$
$$\nabla_y \tilde{L}(\mathbf{x}, \mathbf{y}) = \mathbf{C}_{\mathbf{y}} \mathbf{y} + \mathbf{d}_{\mathbf{y}} = \mathbf{0} = F_y^{net}$$

 Solve linear equation system by Conjugate Gradients method (CG)

Global Placement

- Hold force \mathbf{F}^{hold} compensates net force \mathbf{F}^{net}
- Move force \mathbf{F}^{move} attracts optical devices to empty spaces
- Move force $\mathbf{F}^{move,cross}$ attracts net modules to empty spaces

Legalization and Routing

 Legalization: remove remaining overlap between optical devices by a quadratic problem solver

Module k

Module j

Module I

 Routing: Maze Router presented in Boos+ ICCAD'13

Maximum Insertion Loss

Maximum insertion loss (dB)

Runtime in seconds

	Number of PSEs	Number of nets
8x8 λ-Router	28	64
8x8 GWOR	24	56
8x8 Standard Crossbar	64	111
16x16 λ-Router	120	256

Resulting Layout of 16x16 λ-Router

PROTON [Boos+ ICCAD'13]

Our Approach

Conclusion

- First automatic force-directed placement of ONoCs
 - Minimize waveguide length during initial placement
 - Remove waveguide crossings and module overlap during global placement
- Comparison with PROTON [Boos+ ICCAD'13]
 - Maximum insertion loss decreased up to 48.9% for large topology
 - Runtime decreased up to 99.7% for large topology
- Future work
 - Improve routing algorithm